Hybrid Machine learning models: Trends in Combining and Neural Approaches

Dr S.Belina V J Sara

Assistant Professor, Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpet, Chennai

Asish Santosh Jaiswal

Student Researcher SVKM Institute of Technology , Dhule

A.Gokulakrishnan

Assistant Professor
Artificial intelligence and data science
Erode Sengunthar Engineering College . Perundurai

To Cite this Article

Dr S. Belina V J Sara, Asish Santosh Jaiswal, A. Gokulakrishnan" **Hybrid Machine learning models: Trends in Combining and Neural Approaches**" *Musik In Bayern, Vol. 89, Issue 12, Dec 2024, pp147-155*

Article Info

Received: 28-11-2024 Revised: 07-12-2024 Accepted: 17-12-2024 Published: 27-12-2024

Abstract

Machine learning (ML) has undergone significant transformations over the past few decades, with deep learning and neural network-based models emerging as dominant forces in a wide range of applications. However, traditional machine learning techniques, such as decision trees, support vector machines (SVM), and ensemble methods, continue to offer robust performance in many scenarios. The concept of hybrid machine learning models—which combines traditional ML algorithms with modern neural network-based approaches—has gained attention as a

ISSN: 0937-583x Volume 89, Issue 12 (Dec -2024)

https://musikinbayern.com

DOI https://doi.org/10.15463/gfbm-mib-2024-370

promising strategy to leverage the strengths of both paradigms. These hybrid models aim to enhance predictive accuracy, improve interpretability, and address the limitations of individual approaches.

This paper explores the current trends in hybrid machine learning models, focusing on their integration of traditional and neural approaches, the benefits they offer, challenges they face, and future directions.

1. Introduction

In recent years, machine learning has diversified into two primary categories: traditional machine learning models and neural network-based models. While traditional ML models, such as logistic regression, decision trees, and random forests, excel in structured data and require less computational power, deep learning and neural networks have made a tremendous impact in fields such as natural language processing (NLP), computer vision, and speech recognition due to their ability to automatically learn complex patterns from large-scale data.

However, both approaches have their strengths and weaknesses:

Traditional ML models are often more interpretable and require less data for training. They can perform well on smaller datasets and structured data but may struggle with high-dimensional and unstructured data. Neural network-based models, particularly deep learning, excel in handling large amounts of unstructured data, such as images, text, and audio. However, they require vast computational resources and large datasets to achieve good performance, and their "black-box" nature makes them harder to interpret.

To overcome the limitations of each approach, hybrid models—those that combine traditional ML techniques with deep learning—have become an area of growing interest. These hybrid models aim to capitalize on the benefits of both paradigms, offering improved accuracy, flexibility, and interpretability in a variety of domains.

This paper provides an in-depth review of the trends in hybrid machine learning models, explores how traditional and neural models are being combined, discusses the advantages and challenges of these approaches, and identifies future research directions.

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2024-370

2. Hybrid Machine Learning Models: Definition and Motivation

2.1. What Are Hybrid Machine Learning Models?

Hybrid machine learning models are algorithms that combine the strengths of different machine learning paradigms—specifically, traditional (shallow) learning algorithms and neural network-based (deep learning) approaches. The key motivation behind hybrid models is to leverage the complementary strengths of these approaches to improve the overall performance of ML systems.

Hybrid models can take several forms, including:

- Stacked Hybrid Models: These combine different learning algorithms in a sequence, where the output of one model serves as the input for the next. For example, the output of a traditional model (e.g., decision tree) can serve as features for a deep neural network.
- Ensemble Models: Hybrid approaches often combine multiple models, such as combining random forests with neural networks to enhance prediction accuracy and robustness.
- Multi-Stage Models: In some cases, a model may employ multiple stages, where traditional ML models handle specific features or subsets of the data, and neural networks are used for complex, high-dimensional patterns.

2.2. Why Combine Traditional and Neural Models?

The combination of traditional ML and neural networks offers several compelling advantages:

Better Accuracy: Combining the strengths of both approaches can lead to improved predictive performance, especially in complex, real-world problems. Neural networks excel at capturing intricate, high-dimensional patterns, while traditional ML models are effective for simpler, well-structured data.

Interpretability and Flexibility: Traditional machine learning models tend to be more interpretable, which is crucial in many applications (e.g., healthcare, finance). By integrating traditional methods with neural networks, hybrid models can offer a balance between performance and interpretability.

Handling Different Data Types: Traditional ML methods are typically used for structured data, while deep learning excels in unstructured data (e.g., images, text). A hybrid approach can

handle both types of data simultaneously, making the model more versatile.

Efficiency: Traditional ML models are computationally less expensive compared to deep

learning models, which often require vast computational resources. Hybrid models can help

reduce the computational burden while maintaining high performance.

3. Trends in Combining Traditional Machine Learning with Neural Approaches

3.1. Hybrid Deep Learning and Classical ML Models in Practice

3.1.1. Feature Engineering with Traditional Models

One of the most common ways to combine traditional ML and deep learning is by using classical

models for feature engineering. In many cases, deep learning models require raw, unstructured

data (e.g., text or images) to be transformed into a structured form before training. Traditional

ML models, such as decision trees, support vector machines, or clustering algorithms, can be

used to extract meaningful features from the data, which are then used as inputs to deep neural

networks.

For example:

In NLP tasks, traditional models like TF-IDF or bag-of-words techniques may be used to extract

features from text, which are then passed to deep learning models like Recurrent Neural

Networks (RNNs) or Transformers.

In image classification, a combination of histogram of oriented gradients (HOG) or SIFT features

with deep convolutional networks (CNNs) has shown to improve performance, especially when

labeled data is scarce.

3.1.2. Ensemble Approaches

Ensemble learning combines multiple models to produce more accurate and stable predictions. In

hybrid ML models, traditional ML algorithms like random forests, gradient boosting, or support

vector machines can be combined with neural networks to create ensemble models.

An example is stacked generalization (stacking), where the outputs of multiple models, including

both traditional ML and deep learning models, are used as inputs to a final model, which could

be a simple linear regression or another machine learning model. This method improves model

accuracy by reducing variance and bias. Random Forest + Neural Network: A random forest

model can capture feature interactions efficiently and serve as a feature generator for a neural

network that can then learn deeper patterns in the data.

Gradient Boosting + Deep Learning: Gradient boosting models can be used to identify robust

features from structured data, while deep neural networks are applied to capture complex

relationships in the same dataset.

3.1.3. Transfer Learning with Hybrid Models

Transfer learning allows a pre-trained neural network to be used as a starting point for solving

related problems, minimizing the need for large amounts of labeled data. Combining transfer

learning with traditional ML techniques can be beneficial for applications where labeled data is

scarce.

For example:

Pre-trained Convolutional Neural Networks (CNNs) can be used to extract features from images,

and those features can be passed to traditional ML models (e.g., logistic regression or support

vector machines) for classification tasks, thus combining the power of deep learning feature

extraction with the efficiency and interpretability of traditional ML classifiers.

3.2. Applications of Hybrid Models

Hybrid models are increasingly being adopted in real-world applications where the complexity of

data demands diverse approaches. Some of the notable areas include:

Healthcare: Hybrid models can integrate structured data (e.g., patient demographics) with

unstructured data (e.g., medical images, electronic health records). A neural network can extract

features from images, while traditional models can handle structured data for prediction tasks

like disease diagnosis.

Finance: In stock market prediction, traditional models like support vector machines (SVMs) and

decision trees can be used for handling structured financial data, while deep learning models

such as LSTMs or reinforcement learning are used for sequence-based tasks (e.g., time-series

forecasting).

Autonomous Vehicles: In autonomous driving, traditional models can be used to process sensor

data (e.g., radar or LiDAR), while deep learning models process visual and spatial data (e.g.,

images from cameras).

4. Challenges in Hybrid Models

While hybrid machine learning models offer substantial benefits, they also face several

challenges:

Complexity in Model Integration: Combining traditional and neural models requires careful

design and integration, and improper combination can lead to inefficiencies and decreased model

performance.

Computational Costs: While traditional ML models are generally more efficient, the inclusion of

deep learning components can significantly increase computational resources, especially in

large-scale applications.

Interpretability: While hybrid models attempt to balance accuracy and interpretability,

understanding and explaining the decision-making process in a hybrid system can be

challenging, particularly when deep neural networks are involved.

Data Quality and Preprocessing: Hybrid models depend on high-quality data and robust feature

engineering. The combination of different data types (e.g., structured and unstructured data) may

require complex preprocessing pipelines.

5. Future Directions

Hybrid models represent a promising direction for machine learning, and several trends are likely

to emerge in the coming years:

Improved Model Interpretability: As hybrid models gain popularity, research is likely to focus on

improving the interpretability of deep learning models. Techniques like explainable AI (XAI)

will be essential for providing transparency in hybrid systems.

AutoML for Hybrid Models: Automated Machine Learning (AutoML) tools could play a crucial

role in simplifying the process of combining traditional ML and deep learning models. By

automating the feature selection, model training, and ensemble construction, AutoML can make

hybrid models more accessible and effective.

Unified Frameworks: Future research may focus on developing unified frameworks that

seamlessly integrate traditional ML methods

Conclusion

Hybrid machine learning models, which combine the strengths of traditional machine learning

techniques and neural network-based approaches, represent an exciting frontier in the field of

artificial intelligence. As machine learning continues to evolve, the need for models that can

effectively handle both structured and unstructured data has become increasingly apparent.

Traditional models offer interpretability, efficiency, and effectiveness on smaller, structured

datasets, while deep learning models excel in processing large-scale, complex, unstructured data.

By leveraging the complementary strengths of both paradigms, hybrid models promise to deliver

superior predictive performance, greater flexibility, and a balance between accuracy and

interpretability.

The integration of these two approaches has already demonstrated significant potential in various

domains, including healthcare, finance, autonomous vehicles, and natural language processing.

By using traditional methods for tasks like feature extraction, classification, or data preprocessing, and leveraging deep learning for more complex tasks such as pattern recognition and feature learning, hybrid models can address the limitations of individual approaches and provide more comprehensive solutions.

However, the development and implementation of hybrid models come with their own set of challenges. These include complexities in model integration, higher computational costs, difficulties in maintaining interpretability, and the need for high-quality data and sophisticated preprocessing techniques. As such, there remains much room for improvement in the design and optimization of hybrid systems, as well as in automating the combination of traditional and deep learning models.

Looking ahead, the future of hybrid machine learning models seems promising. Advancements in automated machine learning (AutoML), explainable AI (XAI), and more efficient computational techniques will likely address many of the current challenges, making hybrid models more accessible, interpretable, and scalable. As researchers continue to innovate in this area, hybrid models could become the standard approach for a wide range of real-world applications, offering a more balanced and effective way to harness the power of machine learning in diverse settings.

References

- 1. Shahid Shayaa and Noor Ismawati," Sentiment Analysis of Big Data: Methods, Applications and Open Challenges", IEEE Access, Vol. 6, pp. 1-13, 2018.
- 2. Y. Kim, "Convolutional Neural Networks for Sentence Classification", Proceedings of International Conference on Computation and Language, pp. 1-13, 2014.
- 3. S. Xing, Q. Wang and T. Li, "A Hierarchical Attention Model for Rating Prediction by Leveraging User and Product Reviews", Neurocomputing, Vol. 332, pp. 417-427, 2019.]
- 4. A. Sun and Y. Liu, "On Strategies for Imbalanced Text Classification using SVM: A Comparative Study", Decision Support Systems, Vol. 481, pp. 191-201, 2010.
- 5. A. Kennedy and D. Inkpen, "Sentiment Classification of Movie Reviews using Contextual Valence Shifters", Computational Intelligence, Vol. 22, No. 2, pp. 110-125, 2006.

https://musikinbayern.com

DOI https://doi.org/10.15463/gfbm-mib-2024-370

- 6. G. Gautam and D. Yadav, "Sentiment Analysis of Twitter Data using Machine Learning Approaches Semantic Analysis", Proceedings of 7th International Conference on Contemporary Computing, pp. 437-442, 2014.
- 7. A. Tripathy, A. Agrawal and S.K. Rath, "Classification of Sentiment Reviews using N-Gram Machine Learning Approach", Expert Systems and Applications, Vol. 57, pp.117-126, 2016.
- 8. S.A. Bahrainian and A. Dengel, "Sentiment Analysis using Sentiment Features", Proceedings of IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, pp. 26-27, 2013.
- 9. M. Neethu and R. Rajasree, "Sentiment Analysis in Twitter using Machine Learning Techniques", Proceedings of International Conference on Computing, Communications and Networking Technologies, pp. 1-5, 2013.
- 10. Nadia Nedjah, Igor Santos and Luiza De Macedo Mourelle, "Sentiment Analysis using Convolutional Neural Network Via Word Embeddings", Evolutionary Intelligence, Vol. 6, No. 2, pp. 1-13, 2019.
- 11. Shiyang Liao, Junbo Wang and Ruiyun Yu, "CNN for Situations Understanding based on Sentiment Analysis of Twitter Data", Proceedings of International Conference on Advances in Information Technology, pp. 19-22, 2016.
- 12. A. Rozental and D. Fleischer, "Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment Classification", Proceedings of International Workshop on Semantic Evaluation, pp. 1-6, 2018.
- 13. A. Kamal, "Subjectivity Classification using Machine Learning Techniques for Mining Feature-Opinion Pairs from Web Opinion Sources", Proceedings of International Conference on Computing, Communications and Networking Technologies, pp. 332-335, 2013.
- 14. B. Pang, Lillian Lee and Shivakumar Vaithyanathan, "Thumbs Up? Sentiment Classification using Machine Learning Techniques", Proceedings of International Conference on Empirical Methods in Natural Language, pp. 79-86, 2002.
- 15. Hong Yu and Vasileios Hatzivassiloglou, "Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences", Proceedings of International Conference on Empirical Methods in Natural Language, pp. 132-137,2002.